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A stochastic system in the form of an oscillator with non-linear 
stiffness and non-linear damping acted upon by a random Gaussian delta- 
correlated force is considered. The non-linearities are approximated by 
polynomials. Vectors whose components are stationary values of moments 
of the output coordinate are introduced. Using Markov theory, a chain 
of three-term relations is obtained for them and the solution is 
represented in the form of a continued matrix fraction. The convergence 
of these fractions to the exact results is investigated numerically for 
specific examples. 

It is well-known that analytic solutions of the Fokker-Planck equation describing the 
probable distributions of the output coordinates of non-linear stochastic systems can only be 
found for a few special cases. Existing approximate methods of statistical description, like 
the method of statistical linearization, Gaussian approximation and more general cumulant 
approaches /l-3/, do not always adequately reflect the behaviour of systems under fairly 
strong random influences. The use of continued matrix fractions was suggested in /4/ for 
finding the stationary values of the moments of the output coordinates of stochastic systems 
with cubic non-linearity. (For one-dimensional systems the moments are found in the form of 
ordinary continued fractions 151). The possibility of using matrix continued fractions to 
analyse stochastic systems is demonstrated below. Because the problem of the convergence of 
such aprocedure both in general and for specific dynamic systems is an open question, this 
method is used here for systems which in certain cases have an exact statistical description. 

1. Consider a non-linear oscillator under the influence of a stochastic force 

I" + 2h (1 + f (z))x' + Qa (1 + g (2))s = @'t (t) 

We will assume that the noise is Gaussian and delta-correlated: 

(5) = o, (E (t) 5 (t - 7)) = D,b (x) 

(1.1) 

The effects of non-linear rigidity and non-linear damping will be considered separately, 
although the approach to be used here can, in principle, take both these factors into account. 
Introducing dimensionless variables, we write Eq.tl.1) in the form 

&'x' = y, S'y' = --6F (I) y - G (z) + 5 (t) (1.2) 
F (z) = 1 + f (z), G (z) = I + zg (x), 6 = 2hiQ = Q- 

(where Q is the selectivity of the corresponding linear system). We obtain in the standard 
way the stationary Fokker-Planck equations for the joint probability densities of system (1.2): 

(1.3) 

where the parameter D is the mean energy of the Brownian motion of the linear system. 
When there are no non-linear losses (F(z)= 1) the solution of Eq.tl.3) is known: 

w(z,y)=w,(s)w,(y)=Cexp[--(~+SG(~)~~)! (1.4) 

We remark that the probability density of the coordinate W,(z) satisfies a simple 
ordinary differential equation: 
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dW&x = -D-‘G (x) W, 

which can be shown to be a stationary Fokker-Planck equation for the first-order stochastic 
system 

Q,-4' + G (2) = 5 (1), Q1 = QS2 (1.5) 

Hence, when there are no non-linear losses, Eq.tl.5) is statistically equivalent to the 
original system (1.1) for finding the stationary characteristics of the coordinate. 

2. We will assume tht the functions f (4 and g (4 are specified by convergent 
power series; from physical considerations f (4 should be even, as should the last remain- 
ing term in the expansion of g(z). 

We will first assume that there are no non-linear losses and that the non-linear stiffness 
is an even function given by the expansion 

(which corresponds to Brownian motion with a symmetric potential). Putting x2' = IX, we 
obtain from relations (1.5) and (2.1) an infinite chain of relations for the stationary 
moments of the intensity: 

(I”) It. kgl bk (z*+k) = (b- 1) D (I’-I),, s=l,Z,... (2.2) 

Introducing moment vectors of dimension m of the form 

x, = ((I), <za>, * . *, V)), * . . 
x, = ((z(*-l)m+l), (z(n-l)m+n), . . ., (z”y) 

we can change from Eqs.(2.2) to the corresponding matrix chain of three-term relations 

A,X, + B,X, = C,X,, . . ., A,& + B n X wtl - - C,X7z, (2.3). 

where the auxiliary vector X, has components (0, . . . . O,i). The form of the matrices in the 
chain (2.3) is found from Eqs.(2.2). In particular, restricting expansion (2.1) to two terms, 
we have 

while for m = 3 

(the only non-zero element in the matrix C,, being C,, = D(6n - 5)). 
The solution of the chain (2.3) for the required moment vector has the form of a con- 

tinued matrix fraction 

and the appropriate computational algorithm can be easily 
details see /4/j. 

(2.6) 

implemented on a computer, (for 

3. As an initial example we will consider Brownian motion of systems in potential wells 
of the form 

G, (2) = Sk (z), G* (2) = tg (2) (3.1) 
To use the above method we will confine ourselves to the first two non-linear terms of the 
expansions, 
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We shall compare the first two moments of the intensity obtained from the continued 
fraction (2.6) 
distributions. 

with the results of numerical integration of the corresponding probability 

1 Non-linearitye, 

I Dl l! 2 
<I> t 0.73% ! 1 923 

0,732 1:230 
0,732 1.229 

<IV 2.396 3,723 
3,778 

I :% . 3.780 
nl415 

-Non-linearity G, 
Table 1 

Table 2 

Comparative data are given in Table 1. Here the first rows give moments found by 
numerical integration of the probability distribution (1.4) with non-linearities of the form 
(3.1), the second rows give the corresponding results for numerical integration with PolY- 
nomial non-linearities (3.21, and the third rows give results from the continued fraction 
(2.6) using approximation (3.2). The final row gives the number of approximations (equal to 
the order of the fraction approximating (2.6) for which the required accuracy of 10-3 was 
achieved). We note that for non-linearity G, the second and third rows are psactically 
identical. The relatively large difference between the second and third rows for non-linearity 
G, is due to the fact that the corresponding probability distribution 

w, (5) = c (cosz)"D, --n/z< t< n/2 

has compact support and the moments in the second rows were also obtained by integrating over 
this interval. By integrating over an "infinite" interval the difference between these rows 
did not exceed 0.003 for the given values of 0. The slower convergence of the continued 
fraction for the non-linearity Gz is associated with the larger expansion coefficients in 
(3.2). 

-I 

2 'I 6 

Fig.1 Fig.2 
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Fig.3 

On the basis of a computer analysis one can conclude that for this problem the continued 
fractions converge for any sensible values of the cubic non-linearity coefficient h and 
effective strength of the input noise I), although there is a restriction on the coefficient 
bp which should be less than unity and should not exceed bz+ Fig.1 shows the convergence 
history of the method for a very large non-linearity &= f,bS=0.5). Here n is the number of 
iterations, the solid curve shows the value of the mean intensity, and the dashed,curve shows 
the mean square intensity. The lower curves are for D- 1 and the upper ones are for D=Z. 

4. We will now consider a non-symmetric potential well, assuming that the expansion of 
the function g(x) contains all powers from 1 to 2m. The non-symmetry leads to a non-zero 
odd moments of the coordinate, so we introduce the moment vectors as follows: 

x, = ((x), * . .( (x2”-‘>, (x2”)), . . . (4.1) 
X n S ((ge(n-Vm+l), (Zs(n-%+e>,.. *,(x*“-m)) 

The chain of relations for stationary moments analogous to (2.2) is 

(x’> f %!I tr, <z”‘k) - (s- 1) D (@-a>, s=I,2,..‘. 

X1 can be represented in the form (2.61, the matrices being found using (4.1) and (4.2). 
In particular, using only two terms in the expansion of the non-linearity (m = 1) we obtain 

(4.3) 

It is clear that the even moments are of interest, while the odd moments play the role 
of correction terms associated with the a symmetry of the potential. Numerical analysis 
shows that the method converges for all reasonable values of the cubic non-linearity coef- 
ficient b,, whereas the coefficient br 
(The sign of b, 

should be less than unity and should not exceed b, 
influences the sign of the odd moments and does not influence the even ones). 

Fig.2 shows the convergence history for the continued fraction similar to Fig-l. The 
solid curves are mean square coordinates and the dashed curves are mean values. We note that 
the mean values converge to the exact result much more slowly than (x2>. 

5. Consider the influence of non-linear damping, assuming that the stiffness is now 
linear (g(x) = 0). We approximate the function f(x) by the expansion 

f (2) N u15z + a,x4 (5.1) 

Assuming the system to be selective, we change to the amplitude and phase of the oscil- 
lations in the standard way and during statistical averaging we perform an averaging over 
fast time (see, e.g., 12, 61). The statistical characteristics of the amplitude decouple 
from those of the phase and one can obtain the following chain of equations for the moments 
of the intensity, (I = VnA”,. where A is the amplitude): 

(I’) f Y,ul (P’) + Vest (fsti> = SD (I”‘) 
(5.2) 
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The matrix description of this system is-little different from formulae (2.4): the B, 
matrices are identical with those in (2.4), where b;: = llzak, k = 1, 2, while the others have 
the form 

Table 2 shows how the convergence of the results depends on aI, a2 and D. It gives the 
number of iterations required to give an absolute accuracy of 10e3 for the mean intensity. 
(As was shown in /5/, for a purely cubic non-linearity (a, = 0) the corresponding one- 
dimensional continued fraction always converges). The symbol * indicates that the required 
accuracy was not achieved. As can be seen from the table, the convergence slows down as the 
effective noise strength D and coefficient az increase. The convergence also worsens for 
aa 2 a,, but such a situation is physically unnatural. 

Fig.3 shows the dependence of the mean intensity of the oscillations on the coefficient 
er (the solid curves) and a, (the dashed curves) for D = 1. For the given parameter 
values the continued fractions converged to the exact results. The exact values of the 
moments can be found by integrating the probability distribution of the intensity 

W (I) = C exp [--D-'I (1 -t a,I + "/,aJa)l 

6. In conclusion we point out the possibility of applying this method directly to the 
stochastic Eq.(l.l) if the non-linear functions f (4 and g (4 are given by expansions of 
the form (2.1). A closed statistical description is possible only for a Markov set (5, Y). 
The chain of equations for the stationary values of the joint moments (p;q)= <gyp) has the 
form 

QQ<P+l;q--1)+PQ(P-l;~f+l)+~(P;q)+ 6.1) 

where the indices p and q are positive integers; their sum must be even because of the 
vanishing of all odd moments. (Moments of the form (p;l) are also, of course, zero). The 
original moment vector Xl here has components 

x, =((z2),<Y2>;<z?), <5%Y2), <XY%<Y%. .f (6.2) 
(za"),(~*m-aya>,<z2m-3Ys), . ..* (Yam)) 

and dimensionality equal to 

1, = 2 + 4 + + 2m = m (m + 1) 

It follows from (6.1) that the dimensionality of vectors of higher orders, introduced 
in the same way as X,, is as follows: 

2, = m (3m + I), ., 1, = m 1(2n - l)m + 11 

The solution for the vector Xl has the form (2.6). The matrices A,,B, and C, are 
determined from (6.1), and their dimensionality now increases as the order increases. A 
similar problem was previously solved /4/ for the case of a purely cubic non-linearity (m = 1). 
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